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Two new techniques for the study of the linear and nonlinear instability in growing 
boundary layers are presented. The first technique employs partial differential 
equations of parabolic type exploiting the slow change of the mean flow, disturbance 
velocity profiles, wavelengths, and growth rates in the streamwise direction. The 
second technique solves the Navier-Stokes equation for spatially evolving dis- 
turbances using buffer zones adjacent to the inflow and outflow boundaries. Results 
of both techniques are in excellent agreement. The linear and nonlinear development 
of TollmienSchlichting (TS) waves in the Blasius boundary layer is investigated 
with both techniques and with a local procedure based on a system of ordinary 
differential equations. The results are compared with previous work and the effects 
of non-parallelism and nonlinearly are clarified. The effect of nonparallelism is 
confirmed to be weak and, consequently, not responsible for the discrepancies 
between measurements and theoretical results for parallel flow. Experimental 
uncertainties, the adopted definition of the growth rate, and the transient initial 
evolution of the TS wave in vibrating-ribbon experiments probably cause the 
discrepancies. The effect of nonlinearity is consistent with previous weakly nonlinear 
theories. While nonlinear effects are small near branch I of the neutral curve, they 
are significant near branch I1 and delay or event prevent the decay of the wave. 

1. Introduction 
Currently, the preferred predictive method in industry for transition over complex 

aeronautical geometries rests on the Orr-Sommerfeld theory. To satisfy the basic 
assumption of a mean flow with parallel streamlines in this theory, the weak 
streamwise growth and the small transverse velocity of the flow are neglected. While 
much useful insight has been gained with this approach, there has long been interest 
in removing four of its deficiencies, namely (a) the neglect of mean flow non- 
parallelism ; (b )  whether the temporal growth rates are computed and then converted 
into spatial ones (Gaster 1962) or the spatial growth rates are solved for directly, the 
growth rate analysis incorrectly neglects the upstream history of the convected 
disturbances; (c) the nonlinear interaction between modes that leads the flow into 
turbulence is only roughly accounted for using an empirical correlation with 
experimenta1 data usually the en-method (Smith & Gamberoni 1956; Van Ingen 
1956); and ( d )  the receptivity dynamics through which free-stream and wall 
disturbance perturb the shear flow, are not modelled. 

t Present address : Boeing Commercial Airplane Group, Seattle, WA 98124, USA. 
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As a contribution to the current body of models addressing the above deficiencies, 
we apply three methods for analysing the stability of boundary layers based on 
ordinary, parabolic partial, and elliptic partial differential equations, respectively. 
The latter two methods account for both non-parallel and nonlinear effects, as well 
as the upstream history of the disturbances. The method based on differential 
equations of parabolic type exploits the facts that the mean flow is governed by the 
boundary-layer approximation and, moreover, the second derivatives of the 
disturbance growth rate, wavelength, and velocity profile with respect to the 
streamwise diretion are sufficiently small to be neglected. While these facts have been 
used in previous multiple-scale analyses and the parabolic nature of the resulting 
intermediate equations has been mentioned by Gaster (1974), their potential for 
solving the stability problem has not been explored. These parabolic equations, 
which we denote as parabolized stability equations (PSE), describe the evolution of 
linear or nonlinear two- or three-dimensional disturbances in flows with combined 
slowly changing streamwise properties such as non-parallelism, real-gas effects, or 
dissociation, although we restrict the formulation here to the Blasius boundary layer. 
The PSE can be applied as well in parallel flows to study the temporal or spatial 
nonlinear evolution of initial data. The initial-boundary-value problem associated 
with the parabolic equations can be solved with a marching procedure. Initial 
conditions can be arbitrarily chosen or can be obtained from a local procedure. This 
procedure solves a homogeneous linear system of ordinary differential equations for 
local eigen-solutions similar to previous studies. Provided the derivation of this local 
procedure is mathematically justified (which i t  is only under limited circumstances), 
these eigensolutions agree with the solution of the linearized PSE within negligible 
differences. Given arbitrary initial conditions, the PSE solution will exhibit transient 
behaviour. 

An alternative approach for studying the spatial evolution of disturbances in 
boundary layers including nonlinear and non-parallel effects is the direct numerical 
solution of the NavierStokes equations (DNS). Special attention must be paid to the 
non-physical outflow-boundary conditions to avoid the upstream reflection of energy 
of outflowing disturbances. Here we present a spectral method for solving the 
Navier-Stokes equations that avoids reflections using fringe regions adjacent to the 
inflow and outflow boundaries, yet maintains the benefits of using Fourier series in 
the streamwise and spanwise directions. The DNS approach takes no advantage of 
the essentially parabolic character of the disturbance evolution except in the fringe 
regions. Provided the fringe regions and streamwise periodic boundary conditions do 
not bias the solution, the DNS yield the benchmark for other approaches involving 
one or other approximation. 

This paper consists of three major parts. Section 2 describes the parabolic stability 
equations and the associated eigenvalue problem for local solutions. Section 3 
discusses the approach to solving the NavierStokes equations. Results of the 
various methods are presented in $4 for a comparison between each other and with 
previous work. Although the development of the PSE approach by Herbert & 
Bertolotti and of the DNS approach by Spalart occurred independently, we consider 
the side-by-side presentation of the two approaches and their results beneficial to 
both the verification of the new tools and the establishment of an accurate set of 
benchmark data for the non-parallel and nonlinear stability of the Blasius boundary 
layer. 
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1 . 1 .  Previous work 

Numerous efforts have been made to  avoid the approximations - parallel mean flow 
and linearization - in the stability analysis of boundary layers. The efforts regarding 
the mean flow have been motivated mainly by the fact that accurate numerical 
solutions of the OrrSommerfield equation show a discrcpancy with experimental 
results on the neutral curve for two-dimensional Tollmien-Schlichting (TS) waves. 
Since these discrepancies are strongest a t  high frequency and low Reynolds number, 
the neglect of thc boundary-layer growth has been considered the most likely cause. 

The effect of non-parallelism in the Rlasius boundary layer has been studied with 
the method of multiple scales by Bouthier (1972, 1973), Saric & Nayfeh (1977), Van 
Stijn & Van de Vooren (1983), and Bridges & Morris (1987), with an iterative method 
by Gaster (1974), and with an asymptotic expansion in the frequency by Itoh (1986). 
Bouthier concluded that, in contrast to  the parallel case, the growth rate of 
disturbances in non-parallel flows depends on the distance from the plate and on the 
flow quantity considered and thus requires careful definition. Although this 
conclusion was confirmed in the subsequent studies, their results are different and 
puzzling. In  terms of the preferred experimental measure the maximum 
streamwise r.m.s. fluctuation, Gaster found a neutral curve close to the parallel-flow 
result. While his findings were later confirmed by Van Stijn & Van de Vooren, Saric 
& Nayfeh presented a different neutral curve in better agreement with the 
experimental data. Moreover, their results were virtually confirmed by the 
measurements of Kachanov, Kozlov & Levchenko (1977). Bridges & Morris agreed 
with these results; meanwhile, the results of Saric & Nayfeh on the neutral curve 
were withdrawn. (Drazin & Reed 1981, Addendum.) 

Thc most direct attempt to obtain stability results for two-dimensional 
disturbances has been made by Fasel (1976) by solving the Navier-Stokes equations 
numerically. The key to this success was the formulation of non-reflective artificial 
outflow-boundary conditions, a problem that is still unsolved for more general 
disturbances. I n  a similar approach, Bayliss et al. (1985) obtained results for the 
streamwise evolution of linear and nonlinear TS waves. These numerical studies, 
however, did not resolve the discrepancies between experiment and theory. Recently, 
Fasel & Konzelmann (1990) investigated the non-parallel effects on small-amplitude 
disturbances in the Blasius boundary layer using a direct NavierStokes solver and 
clarified some of the main differences in past results. 

A theoretical model capturing the combined effects of non-parallelism and 
nonlinearity has long been desired. The attempt to incorporate nonlinear effects in 
the multiple-scales approach fails, however, since the crucial solvability condition 
determines only one correction, either for non-parallelism or nonlinearity. This 
weakness of the non-parallel stability theory is probably caused by accounting for 
small terms of the same order at different levels of approximation, a procedure that 
is not rational in the sense of Van Dyke (1975). 

Using the parallel flow approximation, Itoh (1974) and Herbert (1974) applied 
perturbation methods to incorporate the effect of nonlinearity on the growth of two- 
dimensional waves and partially overcame the problem in representing the mean- 
flow distortion. In  a strictly parallel framework, no mean-flow solution to  the 
Navier-Stokes or boundary-layer equations exists in a semi-infinite domain. The 
results demonstrated a stabilizing effect of nonlinearity near the critical point and 
the lower branch of the neutral curve, while this effect is destabilizing near the upper 
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branch a t  higher Reynolds numbers. In the absence of systematic experiments, the 
results could not be substantiated. 

More recently, asymptotic theories valid in the limit of infinite Reynolds number 
incorporated the effects of non-parallelism and nonlinearity simultaneously (Smith 
1979a, b ;  Goldstein & Durbin 1986). Smith found the lower branch of the neutral 
curve similar to Saric & Nayfeh (1977) and concluded that accounting for non- 
parallelism improved the agreement with the experimental data. However, the 
accuracy of the asymptotic results a t  the relatively low Reynolds numbers of concern 
was not verified. 

Smith, Papgeorgiou & Elliot (1984), studied the stability of plane Poiseuille and 
Blasius flow by numerically solving an extended form of the interactive boundary- 
layer equations that can capture both the triple-decked and the quintuple-decked 
structures at the lower and upper branches, respectively, of the neutral curve. These 
equations are obtained from the Navier-Stokes equation by neglecting streamwise 
diffusion terms and the convective acceleration term involving the product of the 
plate normal velocity. Outside the boundary-layer the equations match with the 
usual outer deck. The outer deck is elliptic, but the authors noted that limiting the 
domain to within the boundary layer ‘turns out to work numerically ’, in agreement 
with the parabolic character of our formulation. The streamwise parabolic character 
of the equations, however, was neglected when use was made of the temporal growth 
model, along with the parallel-flow approximation and streamwise-periodic flow. In  
the linearized case, the equations were combined into one that is contained within 
the Orr-Sommerfield equation, and the corresponding spectra were found to be 
similar. In the nonlinear case the Fourier expansion in wavenumber lead to coupled 
equations that were numerically solved using a finite-difference formulation in time. 
Comparison of results to those given by the Navier-Stokes equations showed that 
the difference remained small, suggesting that the neglected terms are not part of 
‘the dominant terms and balances in the unsteady Navier-Stokes equations ’. 

The use of parabolic differential equations in the analysis of problems of basically 
elliptic nature with small feedback is successful in some other areas, e.g. in the 
analysis of acoustic wave propagation (McAninch 1986). In  the field of weakly non- 
parallel flow stability, Hall (1983) suggested solving parabolic equations for steady 
Gortler vortices describing the evolution within terms of order 0(Ri1 ) ,  where R, is 
the Reynolds number based on the streamwise variable. In essence, this approach 
considers Gortler vortices a three-dimensional solution of the boundary-layer 
equations. For steady, spanwise-periodic disturbances, Hall’s equations are a special 
case of the PSE formulated in curvilinear coordinates. Itoh (1986) derived a 
parabolic equation for small-amplitudes TS waves identical with the linearized PSE 
for two-dimensional disturbances. Itoh observed that his equation contains both the 
unsteady boundary-layer equation and the Orr-Sommerfeld equation as limits, 
hence its solutions can directly describe the matching of solutions shown with 
asymptotic methods by Goldstein (1983). Since separation of variables is in- 
applicable, Itoh choose an asymptotic expansion in frequency to reduce the problem 
to a sequence of ordinary differential equations. 

2. The parabolic stability equations 
The development leading to the parabolic stability equations is applicable to a 

wide range of convectively unstable flows. For brevity and without loss of generality 
we consider two-dimensional disturbances in the Blasius boundary layer. The 
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extension to three-dimensional disturbances can be found in Herbert (1991) and in 
a more extended description in Bertolotti (1991). 

We use Cartesian coordinates x ,  y ,  where x is the streamwise direction and y is 
normal to the plate. The NavierStokes equations are written in terms of the stream 
function Y to satisfy continuity identically, 

All quantities are non-dimensionalized using the velocity U,  and the fixed length 
6, = 6(x,) = (ux",/U,)t, where Zo is a dimensional distance from the leading edge, 
here taken to be the starting location of the analysis, and u is the kinematic viscosity. 
R, = U,d,/u is the Reynolds number based on 6,. We further note the relations 
xo = Zo/do = R,, and R = ( x / x , ) ~ R ,  = (ux"/U,)f, where R is the Reynolds number 
based on S(x) .  

We decompose the stream function into the disturbance $(x ,  y , t )  and the 
mean flow YB(x,y) that is given within the boundary-layer approximation by 
YB = f (y ) (x /x , )y+  O(R-'), where f satisfies the Blasius equation 

f"' +iff" = 0, 
f = f ' = O  at  y = O ,  f '+l  as y + m ,  (2) 

with y = i j / 6 ( Z ) ,  and i j  is the dimensional coordinate normal to the plate. The 
nonlinear equation governing the disturbance $ is obtained by introducing the 
combined flow into the Navier-Stokes equation and subtracting the equation 
satisfied by the mean flow: 

where the errors of order 0(Rp2)  are introduced by the boundary-layer approximation 
to the mean flow. 

This equation supports solutions in the form of waves. Applying the boundary- 
layer approximation directly to this equation to obtain one similar to the unsteady 
parabolized NavierStokes equation would be incorrect since the relatively short 
wavelength of instability waves causes streamwise changes too large to be neglected 
(Herbert & Morkovin 1980). However, parabolic equations for the slowly varying 
components of the solution can be obtained by accounting separately for the wave- 
like nature on the disturbance, as will next be shown for a single-frequency wave 
governed by the linearized version of (3). Inclusion of the nonlinear terms produces 
a coupled set of parabolic equations, as will be discussed later. 

A spatially evolving two-dimensional wave of constant frequency w is described by 
specifying the streamwise wavenumber a ( x ) ,  the exponential growth rate y ( x ) ,  and 
the velocity profiles as derivatives of the complex stream function # ( x ,  y). These 
quantities are combined to represent the disturbance stream function in the form 

$(x ,  Y, t )  = # ( x ,  Y) X ( X 9  t )  +c.c., (4) 

where x ( x ,  t )  = exP[ r  a(b)db-iwt], 
2 0  

a ( x )  = y ( x )  + ia (x) ,  
and C.C. stands for the complex conjugate. 

15-2 
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The partition of @ into x and q5 in (4) resembles the normal mode form used in the 
Orr-Sommerfeld theory, where x models the wave-like nature of the disturbance and 
q5 models the slowly changing profile. Previous investigators further reduced the 
problem to ordinary differential equations by employing an expansion in a slow 
streamwise variable in the form 

w> Y) = q50(EX, Y) + E q 5 1 ( W  Y)> 
a(x )  = aO(ex) + sa,(ex), 

where E is a small parameter of order O(R-l) .  The solution is obtained by solving the 
governing ordinary differential equations for #o, a,, and a, in succession. Such an 
expansion is used, for example, in the method of multiple scales. However, this 
approach introduces two fundamental shortcomings which are absent in the 
formulations of the PSE. First, application of the expansion to nonlinear problems 
gives rise to two unrelated expansion parameters measuring the non-parallelism and 
the amplitude, respectively, and consequently requires arranging the governing 
equations in hierarchical order. This shortcoming is not present in the PSE analysis 
because all terms are treated simultaneously. The second problem occurs when the 
wavelength of the disturbance becomes sufficiently long to reduce the order of the 
convective acceleration terms to that of the viscous forces, namely O(R-l). Except in 
the unlikely case of a self-similar disturbance flow field (i.e. neither growing or 
decaying), the flow field cannot be approximated by solutions to a succession of 
ordinary differential equations. The nonlinear PSE, on the other hand, correctly 
approaches the unsteady boundary-layer equation in this limit. Steady two- 
dimensional disturbances with an infinite streamwise wavelength occur in the form 
of the mean-flow distortion that is generated by nonlinear mode interaction, and in 
three-dimensional flows in the form of streamwise vortices generated by surface 
curvature, crossflow instability, and by nonlinear mode interaction. 

For fixed free-stream velocity and viscosity, hence fixed Ro, the dependence of a 
and q5 on x results from the non-parallelism of the mean flow that renders (3) non- 
separable in x and y. In general, the dependence on x can result from non-parallelism 
and nonlinearity. Since both q5 and x depend on x, the partition of @ into q5 and x in 
(4) is ambiguous. Indeed, a part of the exponential factor an be included in q5 without 
any change in the form of the partition. The partition becomes beneficial when the 
analysis is applied to flows in which disturbances exhibit the following two 
properties : 

(Pl) The velocity profiles, wavelengths, and growth rates change slowly in the 
streamwise direction. Hence, in the formulation of (4), there exist values of 
y and a such that a2a/ax2 and a2q5/ax2 and products of first derivatives aa/ax, 
aq5/ax are negligibly small. 

(P2) The disturbances grow and decay as convected instabilities. No self- 
sustained oscillation in any region of the mean flow is possible. The mean flow 
acts purely as an amplifier of incoming free-stream disturbances and, in their 
absence, the flow returns to its undisturbed state (Huerre & Monkewitz 
1990). 

Under the conditions (Pl) and (P2), a normalization condition can be specified 
such that q5 and a become slowly varying functions of x. Then the analysis leads 
naturally to parabolic equations governing the evolution of q5 and a since the second 
derivatives of these quantities with respect to x are negligible. 

The assumption that these properties hold is inherent in all the aforementioned 
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analyses. Property (P2) implies that the instabilities exhibit a negligible dependence 
on downstream conditions and produce an equally negligible upstream influence. 
Direct Navier-Stokes solvers with an outflow boundary condition make use of this 
property (within the boundary layer). 

Property (Pl) has been observed to hold for TS waves both in experiments and in 
numerical computations. A supporting argument can be derived from Morkovin's 
(1985) observation that the maximum amplification of small-amplitude TS waves 
occurs when a positive feedback loop exists between the two viscosity-dominated 
regions, the critical layer and the Stokes layer at the wall, and that the ratio of Stokes 
layer thickness to the distance of the critical layer from the wall remains practically 
constant along the ridge of maximum TS wave amplification in the frequency- 
Reynolds-number plane for 1.22 x lo5 < R, < 8.44 x lo8. Since the location the 
critical layer depends on the u velocity profile of the mean flow, we can conclude that 
the growth of the boundary layer tunes and detunes the feedback loop and it is 
plausible to expect changes in y and a with x to occur on a similar scale as the 
divergence of the mean flow. 

This argument does not carry into the nonlinear region, but simulations of the 
three-dimensional breakdown of TS waves by using the PSE (Herbert & Bertolotti 
1991) show that (Pl) and (P2) hold up to the spike stage. Further supporting 
evidence can be inferred from the agreement between temporal and spatial DNS 
simulations since in the former case the streamwise boundary conditions are periodic 
and the complex velocity profiles vary only with y and t .  

With property (Pl), the derivatives of $ with respect to x are linear in a#/ax and 
daldx, and take the simple form 

Introducing this result in the disturbance equation (3) yields a partial differential 
equation of parabolic type that is the first of two equations which comprise the PSE. 
The parabolic character is clearly exhibited when the linearized equation for two- 
dimensional disturbances is written in operator form, 

34 da 
ax dx 

(Lo+L,)#+L2-+-L3# = 0, 

with boundary conditions 

and initial conditions 

The operators Lo to L, operate only in y and are 
#(x07 Y) = f ( Y ) ,  = 

ay3 
1 
R Lo = --(D2+a2)2+ 

a 3 y B  a y B  
L, =- D-- (D2 +a2) D, 

ax ay2 ax 

4a aYB a3 yB 
R aY a y 3  

L2 = -- (D2 + a2) +- (D2 + 3a2) - 2iwa- - 
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2 aul ,  
R a Y  

L, = --(D2+3a2)-iw+-3a, (74 

with D = a/ay. Lo is the Orr-Sommerfeld operator and L, accounts for the transverse 
velocity component of the mean flow. 

A second equation is required to resolve the ambiguity in partitioning @ in (4) into 
two functions of x. Clearly, we wish to exploit this ambiguity such that the computed 
values of a and $ satisfy (Pl). We achieve this by specifying a normalization on $ 
which restricts rapid changes in x. Possible choices are 

for all x 2 xo. Here, 4 = a$/ay is the complex velocity profile, t denotes the complex 
conjugate, and ym is some chosen location, usually the point where 141 reaches a 
maximum. The normalization condition specifies how much growth and sinusoidal 
variation is represented by the exponential function x and the profile 4, respectively. 
This partition varies slightly with the normalization employed ; however, the growth 
rate based on physical quantities will be independent of the of the choice of 
normalization, as discussed below. Equations (6) and (8) comprise the linearized 
parabolic stability equations that govern the evolution of the unknown functions a 
and $. 

In special limits, the linearized PSE equation (6a )  is equivalent to equations used 
in previous studies. At high Reynolds numbers, when the non-parallel effects are 
very small, (6a) approaches the Orr-Sommerfeld equation. At low Reynolds 
numbers and low frequencies, the wavenumber becomes small and powers of a 
become negligible. I n  this limit, (6a) approaches the unforced unsteady boundary- 
layer equation used in receptivity analyses. Itoh (1986) exploited this property to 
verify the matched asymptotic expansions of Goldstein (1983). If streamwise 
curvature is included, the PSE for three-dimensional disturbances contain the 
parabolic differential equations for Gortler vortices given by Hall (1983). 

2.1. The nonlinear problem 
The evolution of a TS wave, with frequency w and wavenumber a, from infinitesmal 
to  finite amplitude is accompanied by the rise of the harmonics having frequencies 
nu, n = 2,3,  . . . , as well as a steady mean-flow distortion (n = 0). The phase speed of 
the harmonics will be equal, or nearly equal, to that of the TS wave, since otherwise 
the finite-amplitude structure would disperse. Thus, we set the wavenumber of the 
harmonics equal to na, and represent the flow field as 

(9) 

where a,, = 7% + ina. Property (Pl) is assumed to extend to  all harmonics. Inserting 
the expansion (9) into the disturbance equation (3), using ( 5 ) ,  and performing 
harmonic balance in the frequency yields a set of coupled nonlinear equations of the 
form : 

1 m 

+(x, y, 4 = Iyg(x, y) + c $n(x, y) exp a,(<) dC-inwt 9 

n--m KO 
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where 

The operators Lo, L,, L, and N depend nonlinearly on a,(x). Comparison of the 
left-hand sides of (10a) and (6a)  shows that we have specified dan/dz = 0. We use 
this approximation to simplify (10a) but note that its use is not a necessary step in 
the formulation. This topic is further discussed in 52.3. The boundary conditions are 

(lob) W n  - 
a Y  

4 = - - 0  at y = O ,  y+m, n = 1 , 2 , 3 ,  ..., 

The boundary conditions for the oscillatory Fourier components n > 0 require 
vanishing u and v velocities at  the wall and at  infinity. The boundary conditions for 
the mean flow distortion replace the condition v = 0 at infinity to allow a variation 
of the displacement thickness, as required by the boundary-layer approximation. To 
complete the formulation of the PSE, a normalization condition is imposed on every 
mode. At  finite amplitudes, the velocity profiles of the TS wave and the harmonics 
may develop multiple local maxima, and it is more appropriate to specify a 
normalization of the integral of f2 as in ( 8 c )  rather than on ukax as in (8b) ,  

Re[J:$G:dy] = 0, n = 0,1,2,  ... ,n,  

Im[ low 2 6: dy] = 0. 

Equations (10) and (1 1) provide 2n + 3 equations for the 2n + 3 unknowns, 

q U % Y L  y n ( 4 ,  44, n = 0,1,2,  -.. ,n .  (12) 
We note that, in contrast to weakly nonlinear theories, the PSE formulation does not 
require a hierarchical ordering of terms based on amplitude. The convergence of 
series (9) is maintained during the marching procedure by introducing new 
harmonics, (i.e. increasing the cutoff N ) ,  when these harmonics are forced by a right- 
hand side that is greater than a pre-set threshold. This threshold is selected at less 
than order O(R-,), consistent with the order of the neglected streamwise derivatives. 

2.2. Measures of growth 
In the parallel-flow approximation, all physical quantities grow or decay according 
to the eigenvalue of the Orr-Sommerfeld equation in exactly the same way. In a non- 
parallel mean flow, the growth and phase variation of some physical quantity Q 
depends on a, q5, and possibly the y-derivatives of $. The growth rate of Q is defined 
as the logarithmic derivative 

where the division by Q renders the result independent of the magnitude of Q. 
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Growth rates have been predominantly based on velocities. We denote the real 
physical velocities by u,  v, the root-mean-square velocities by u’, v’, and the complex 
velocity profiles in the mathematical formulation by Zi, 6. 

As observed by Bouthier (1973), the dependence of 9 on y makes the growth rate 
at each streamwise location ambiguous since different rates are obtained at  different 
distance from the wall. Furthermore, as discussed by Schubauer & Skramstad (1947), 
Gaster (1965), and Saric & Nayfeh (1977), the growth rate is affected by the 
direction, say Y = Y(x), along which the streamwise derivative of Q is taken. Van 
Stijn & Van de Vooren (1983) further noted that the growth rate based on the 
maximum of u’ a t  ym is independent of the direction Y ( x ) .  

The streamwise change of ukax is indeed a good measure for the growth of small- 
amplitude disturbance for various reasons. The experimental measurements of the u- 
component are more accurate than those of the v-component. Growth data based on 
ukax are independent of the path traversed by the sensor and avoid the need to 
determine the exact height of the sensor above the plate. In addition, the amplitude 
based on uhax is proportional to the strength of the vorticity a t  the critical layer that 
plays a central role in the evolution of secondary instabilities. The growth rate and 
wavenumber based on uLax are given by 

Other quantities such as the disturbance energy can be 

( 1 4 b )  

monitored for growth. 
With some exceptions, e.g. the growth of u at  the point where u changesphase, 
growth rates and wavenumbers based on different quantities agree within O(R-’). 
However, neutral stability curves can differ widely a t  the higher frequencies where 
the growth rate is of the same order. 

2.3. On the normalization condition 
We expand the discussion on the normalization condition, (8),  that supplies the 
equation needed for the evaluation a ( x )  = y(x) +ia(x). The left-hand-side of (8c )  is an 
inner product, (4,2;,). This inner product lets us define the projection of 4, onto d,  
denoted b, and computed as 

b = (4,2;,)/(2;, 4). 

The function r(x, y) = 4, - b4 
is the component of d, orthogonal to d. Clearly, when r = 0 then 4 - ebz, so that b +a 
yields, locally, the total exponential change of u = 4x. The orthogonal decomposition 
2, = bd + r helps us understand the normalization condition, as follows. 

Given the values of ai and tii a t  xi,  we take a step forward to x , + ~  keeping a = a, 
and solving (6a )  for 6,+,. Using the finite-difference representation for d, in (15), we 
obtain 

with the corresponding decomposition 

The rapid growth of 14,1 with j can be most easily seen in the case of constant b. In  
practice b, may vary, but the variation does not alter the results of this analysis in 
a significant way. For constant b the solution to (17)  is 

d, = Go( 1 + bAx)’ +fit 

(15) 

(16) 

(17) 

b,+l = G,, (&,+I- d * ) / A X ) / ( ~ , >  2;,>> 

G,+l = (1  + b,,, Ax) Gj+l. 
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where f is the particular solution, whose exact form does not concern us here. What 
is of concern is the exponential growth of 12, for non-zero 6 ;  this growth may violate 
the assumption of a slowing changing profile with x.  It is necessary, thus, to keep 
lb,1 < 1 at every step. The magnitude of Ibr+ll in (16) depends on the value of a used 
during the marching step. If Ib,+J is non zero, we can repeat the marching step with 
an updated value of the exponent a to obtain a new smaller value of Ibi+ll. In 
particular, if we repeat the step from x, to x,+~ using a = a,+b;:),, where the 
superscript (1) on bj+l denotes the value obtained in our first iterate of the marching 
step, and compute bj:)l, we obtain lbj;)J < lbj:)lI. We can repeat the step again using 
a = ai+bj:)l+bjyl, to obtain lbj$)ll < lbj!)ll < lbj:)l, and so on until IbjyiI is as small as 
desired. Indeed, there exists a value a = for which b,+l = 0, that is, for which ( 8 c )  
is satisfied. 

Thus, condition ( 8 c )  provides the unique value of a(.) that removes from 6, any 
exponential change (i.e. both growth and rotation) measured by b in (15). The profile 
6,  then, contains only the remainder r that captures the slow, O(R-'), streamwise 
variation of the profile. The above discussion is equally applicable when one chooses 
( 8 6 )  as the normalization condition, since (8b)  can be seen as a special case of ( 8 c )  
with a Dirac delta function multiplying the integrand. 

Our numerical investigations show that the values of a(x)  obtained using (8b)  and 
( 8 c )  differ slightly. This arbitrariness is of no concern, however, since it only affects 
the partition (4). The corresponding growth rates based on a physical quantity, as 
presented in $2.2, are equal to within the order of our approximation, O(R-2). 

Lastly, we observe that since the growth from x, to x,+~, holding a constant, is of 
magnitude 11 + bAxl, a restriction exists on the step size Ax. If the step is too large and 
b is non-zero, the growth of G,+l may violate the assumption of slow variation with 
x. As shown below, however, this restriction is not too severe, so that the limiting 
step size is far larger than the step size needed to resolve branch I and branch I1 with 
acceptable accuracy. 

2.4. Numerical formulation 
The semi-infinite domain, Y E  [0, a), is mapped algebraically to BE [l, 0) using 

g=- Yo 
YO+Y' 

where yo is a suitably chosen parameter. The function $(x , y )  and operators L, are 
approximated by vector d(x)  and matrices M,(x) ,  respectively, using a spectral 
collocation method in $. The parameter yo controls the distribution of collocation 
points in the physical domain. If not otherwise stated, the results presented here 
have been obtained using 40 Chebyshev polynomials. The profiles for modes n > 0 
are expanded in a series of odd polynomials that automatically satisfy the far-field 
boundary condition, while even polynomials are used for the mean-flow distortion 
mode. 

The streamwise derivative, a#(x)/ax is approximated by the finite-difference form 
(#,+l-#,)/Axj, where j is the step index. Owing to the appearance of a in the 
operators L,, the system (6) is nonlinear. Iteration is employed to solve the nonlinear 
algebraic system exactly at the midpoint of the interval, where the finite difference 
form of a/ax is second-order accurate. The iteration employs a predictor-corrector 
approach that corrects the value of a until the normalization condition ( 8 b )  is 
satisfied. The convergence of the iteration is monitored during every step, and the 
marching procedure terminates if the equation fails to be satisfied within a given 
error limit. 
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The collocation and trapezoidal procedures lead to  an algebraic system of the 
form : 

(Mo + Ml)[#j+1,2I + Mz[#j+i -4jIlAx = 0, 

# j + l / Z  = t(#j+l+ #j). 

(19) 

where the matrices Mi are evaluated with the values of !PB and a at  the midpoint of 
the step, and 

The iteration is composed of two parts, the first of which solves (19) for #*+?, followed 
by the modification of the growth rate y and the wavenumber a according to the 
finite difference form of the normalization ( 8 b ) ,  

where the subscript max indicates evaluation a t  ym, the location where 141 attains its 
maximum. During the iteration procedure, (20a) and (206) transfer the growth and 
the rotation in the complex plane, respectively, of GmaX into the function x. The 
iteration is continued until the largest modification is less than lo-*. The process is 
repeated a t  the next marching step. 

We found it beneficial to use an implicit Euler formula during the initial steps to 
increase the damping of transients created by the initial conditions. We change the 
finite-difference formula gradually to the Crank-Nicolson formula as the integration 
progresses downstream to improve the convergence of the iterative process. 

The extension to the nonlinear problem is accomplished by applying the above 
procedure to each mode $,, leading to a coupled nonlinear algebraic system of the 
form 

(Mo + M1)[#n,j+1/zI + M d # n , j + l - # n , j I l A ~  
m 

= C N ( d m , j + l / z ,  # n - m , j + l / ~ ~ A m . j + l / ~ A n - m , j + ~ / ~ l ~ n , j + l / z  (21) 
m--m 

for the unknowns (12). The amplitudes are evaluated a t  the midpoint of the step, 

The first part of the iteration solves #n,i+l for each n. In  the second part, the 
normalization (8c )  is applied to  obtain the modification of the growth rates yn, 

and the modification to  the wavenumber a of the TS wave, 

transferring the average growth of the complex quantities $?(aG,/az) dy into xn. The 
iteration is continued until the largest modification is less than lo-*, after which the 
process is repeated for the next step in x. 
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2.5. Local solutions 
To obtain pointwise results on stability and to generate the initial conditions (6 b)  for 
stability analysis with the PSE, we apply a local procedure that uses only the mean- 
flow and the disturbance parameters at  some streamwise location x,, say. If the 
amplitude of the TS wave is sufficiently small for linearization, this local procedure 
is similar to that introduced by Bouthier (1972) and later applied by others, yet our 
derivation appears much simpler and provides a more consistent formal approach. In  
particular, this approach permits accounting for both non-parallelism and non- 
linearity. Therefore, the finite-amplitude TS waves, the local procedure can be 
coupled with a Landau expansion in the amplitude (Bertolotti 1991). In any case, the 
local procedure rests on ordinary differential equations that govern the properties of 
the solution in the neighbourhood of x,. Here, we present only the linear procedure 
to obtain the unknown quantities $, a$/ax, a ,  and daldx in (6) for given parameters 
w ,  R,, and the mean-flow YB. 

We introduce a Taylor expansion for $, a and the mean-flow YB with respect to 
the variable 6 = x--5, and note that higher derivatives can be neglected within 
property (Pi) and the boundary-layer approximation to the mean flow. We obtain 

$(.,Y) = $ o + E $ , ,  = a,+&,, 
and a similar expansion for the mean flow, where 

The disturbance stream function takes the form 

%%Y, t )  = ~ ~ , + 5 ~ , ~ e x P [ ~ ~ a 0 + a ~ ~ d 5 - i ~ l  0 1 . (23) 

Introducing this expression into (6) and requiring the equation to be valid for 
varying 6 provides two equations, 

where 
a 2  yB a 4  yB 

L4 =-(D’+u’)u-- axay ay3 ax a. 

Together with the homogeneous boundary conditions on $, and from ( s a ) ,  
equations (24) represent a coupled system of equations for the unknown quantities 
a,, $o(y), a,, $,(y).  In contrast to previous formulations, this system simultaneously 
determines all quantities up to O(R-’) in one step. Moreover, solving this system does 
not require the usual solvability condition and thus (24) provide a suitable zeroth- 
order approximation in a Landau expansion for finite amplitudes. 

The solution of (24) can be obtained in different ways depending on the choice of 
normalization and numerical approach. We can directly impose the normaliation 
( 8 b )  such that $, and $1 are subject to the conditions 

and solve the nonlinear system (24), e.g. by use of Newton’s method. 
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An interesting alternative uses the approximation a = const, and hence a, = 0. 
Then (24a, b)  form an eigenvalue problem for the single eigenvalue a, and eigenvector 

As we will show in the discussion of the spectrum, the eigenvalue a, differs by 
O( lalR-’)i from the corresponding eigenvalue of the Orr-Sommerfeld equation. 
Consequently, within the context of the local procedure, the approximation a, = 0 is 
effectively a normalization condition. This formulation of the local procedure allows 
one to determine easily the asymptotic form of the function $(x, y) outside the 
boundary layer in the neighbourhood of x,, 

(27) $(x,y % 1) = (x+iKy)eiau, 

1 
1 - VJ(i + w / a )  ’ 

K =  

where V, is the tranverse mean velocity far from the plate. This asymptotic 
behaviour is different from that of Orr-Sommerfeld solutions in parallel flows. 

Finally, an iterative procedure can be utilized to solve the eigenvalue problem 
subject to conditions (25). This procedure starts with solving the Orr-Sommerfeld 
problem = 0 to obtain an approximation to a, and 4,. The next step solves 
(24b) together with the norm (25) on $, for a, and $, by using a solvability condition 
or solving the augemented system. The third step serves to find a new approximation 
to a, and $, using the inhomogeneous equation (24a) and a second solvability 
condition. Up to this point, the iterative procedure leads to equations identical with 
those derived with the method of multiple scales (e.g. Saric & Nayfeh 1977). While 
the iterative procedure can be continued until the results converge to the solution of 
the simultaneous equations, it  is consistent with the order of approximation to 
truncate after the third step. 

For disturbances of long wavelength, the local procedure is inconsistent by keeping 
or discarding terms of equal order. This inconsistency arises when both a, is O(R-’) 
and a, is O(R-2). Then (24b), which can be seen as a ‘closure’ equation for the local 
procedure, is composed exclusively of terms of O(R+’), which is inconsistent with ( 5 )  
where terms of this order are neglected. The ‘breakdown’ of the local procedure in 
the limit of long wavelengths simply reflects the fact that it is not possible to obtain 
a solution to a partial differential equation of parabolic type using a Taylor-series 
expansion a t  a chosen streamwise location since the initial conditions cannot be 
accounted for. Long wavelengths occur at  low frequencies and low Reynolds 
numbers, hence our observations agree with those of Itoh (1986) on the existence of 
a value of R,  dependent on F, below which the disturbance equation (3) cannot be 
reduced to a set of ordinary differential equations. 

The weaker dependence on the upstream conditions a t  the shorter wavelengths 
appears to be caused by a change in the character of the governing equations related 
to the dominance of the convective acceleration forces over viscous forces. At long 
wavelengths the convective and viscous terms are of equal order at every point 
across the boundary layer, as is the case in Prandtl’s boundary-layer equations. At 
shorter wavelengths, however, the balance is limited to the wall and the critical layer 
- a fact used in the singular perturbation solutions to the Orr-Sommerfeld equation 
(e.g. Tollmien 1929) -while outside these layers the convective terms must balance 
each other ‘locally ’ a t  every point along the streamwise direction. Solutions started 
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FIGURE 1. Spectrum of the spatial eigenvalues ,u of (26) (A, N = 25; 0,  N = 40) and of the 
On-Sommerfeld equation (0 ,  N = 40; 0,  N = 80) for the Blasius boundary layer. R = 500, 
F = 100. 

from different initial conditions asymptote downstream to a single solution, as shown 
in $4.2. 

Initial conditions for transient-free marching solutions can be obtained at finite TS 
amplitudes by solving the nonlinear local problem. Using a Landau expansion 
procedure, the profiles $,, a$,/ax and exponents a ,  in (9) are expanded in powers of 
A ,  where A is the amplitude of the fundamental wave yielding a series of ordinary 
differential equations which can be solved in succession. The use of a well-defined 
amplitude A overcomes the non-uniqueness in determining the higher-order terms 
and avoids the restriction to almost neutral disturbances (Herbert 1980). The 
absence of a solvability condition in the treatment of the mean-flow non-parallelism 
allows this Landau expansion to solve concurrently for the effects of non-parallelism 
and finite amplitude (Bertoltti 1991). 

Alternatively, one can prescribe initial conditions obtained by simpler means and 
accept the initial transients in the marching solution. If the initial amplitude of the 
TS wave is small, only the fundamental TS wave obtained from (24) needs to be given 
as initial condition; the harmonics are generated by nonlinearity during the 
marching process. 

2.6. The eigenvalue spectrum 
Typically, we use the least-stable eigensolution from the spectrum of the local 
procedure as initial conditions for the PSE. We discuss below the ways in which this 
spectrum differs from that of the OrrSommerfeld equation. The eigenvalue a 
appears up to fourth power in the matrix of the local procedure. The spectrum is 
accessible through standard software packages, such as EISPACK, provided the 
equations are reformulated into a larger system that contains the eigenvalue linearly 
(Gohberg, Lancaster & Rodman 1982, Bridges & Morris 1987). Figure 1 shows the 
spectrum for R = 500 and F = 100 together with the spectrum of the Orr- 
Sommerfeld equation (OSE). The local formulation splits each OSE eigenvalue into 



456 F .  P .  Bertolotti, T h .  Herbert and P .  R. Spalart 

a neighbouring pair of eigenvalues. The split is due to the perturbing effect of the 
operators L, and L, which are O(R-l) and O(lalR-'), respectively. For further study 
of this phenomenon we fix all parameters, including the Reynolds number, and 
introduce E = R-' as a measure of the order of the terms in the operators L, and L,, 
which are rescaled to Ll = RL,  of order 1 ,  and t, = RL, of order la[. The matrix (26) 
takes the form 

Let (p1 ,p2,  . . .) be the eigenvalues of Lo with associated eigenvectors $,, . . .). 
Set E to zero and call the resulting matrix M. Since det (M) = det (L,)det (Lo), 
M has the eigenvalues of Lo with multiplicity two and a single associated eigenvector 
of the form ($j, O)*.  The splitting of pi into pjl and p,, can be expressed in a Puiseux 
series representation (Lancaster 1969), 

, U , ~ ( E )  = p j + c j l ~ ' / '  + d j l ~ 2 / 1 + O ( 1 ~ 1 3 / ' ) ,  (29a)  
p j z ( e )  = p j+c j2e1 / '  + d , , ~ ~ / ~ + O ( l s 1 ~ / ~ ) ,  (29b) 

where the subscripts j, and j2  refer to  the two perturbed eigenvalues, and 1 is an 
integer less than or equal to the multiplicity of pj .  In  our case I = 1 or 1 = 2. The value 
of 1 was determined numerically by choosing the eigenvalue pj associated with 
unstable TS wave and tracing p,, and p,, as E was varied from zero to R-' in (28), 
holding R ,  and all other parameters, fixed. The results indicate that 1 = 2, and that 
the coefficients cjl and c , ~  are unequal and complex. The difference between the real 
parts of ,u,~,~, and pj is approximately the distance between the dashed and solid lines 
shown in figure 2. While the separation is of O(R-') for R < 600, at  higher R it 
increases to O(lalR-l)f, as indicated by our analysis. In the next section we discuss the 
relevance of using one or the other of these two eigensolution for the initial 
conditions. 

2.7. Properties of the local and marching procedures 

The 'neighbouring pair ' characteristic of the eigenvalues of the matrix (26) does not 
carry over to  the physical growth rates. Figure 2 shows as dotted lines the variation 
with Reynolds number of the real part of the eigenvalues pa and pb corresponding to 
an amplified TS wave, and as solid lines the physical growth rate based on u t x  
computed from these eigenvalues and their associated eigenvectors by (14a) .  While 
the real parts of the eigenvalues differ noticeably, the maximum difference in the 
physical growth rates is of the order of lo-', hence negligible. Both eigensolutions 
were used as initial conditions for the marching procedure. The marching results for 
both cases were found to  be in agreement with each other and with the results of the 
local procedure. The filled and open circles in figure 2 denote the growth rate based 
on ukax given by the marching procedure with the two sets of initial conditions. 

The marching procedure is computationally more efficient than the local procedure 
by an order of magnitude. We have performed our calculations on a Cray-XMP124. 
The marching procedure with 40 Chebyshev polynomials requires 0.06 s per step 
regardless of the step size. In  contrast, the local procedure, using Newton iteration, 
converges in 0.38 s following a change in the Reynolds number and can only proceed 
in small steps. 

An important consideration for the marching code is the variation of the accuracy 
with the streamwise step size. We tested the accuracy by comparing the result for 
Ii~(x)l = + 8,))" based on uLax at R = 916 after marhing from R, = 400 with different 
steps sizes. The most accurate value was assumed to be given by the smallest step size 
Ax = 6 and was used as a reference, are,. Step sizes ranged from Ax = 6 (256 steps) 
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to Ax = 486 (4 steps). The difference I c T - c T ~ , , ~  remains a t  0(10-5) up to a step size of 
Ax = 100 (16 steps), and increases afterwards as lop5 exp (0.0125 Ax) until reaching 
0(10-3) at a step size of 377.7 (5 steps). At  larger step sizes, the solution rapidly 
deteriorates. 

3. The direct Navier-Stokes solution 
The numerical method used here evolved from that presented by Spalart, Moser 

& Roger (1991), which has been applied to a variety of transitional and turbulent 
boundary layers. The algorithm, spectral in space and second-order accurate in time, 
was designed to solve the incompressible Navier-Stokes equations over a flat plate 
at  y = 0 with periodic conditions in the directions x and z parallel to the plate. 
Because of the periodicity, the studies of spatially evolving flows could not be exact, 
and had to involve assumptions of slow growth of the boundary-layer thickness and 
disturbance energy, similar to those presented in $2 of this paper but more 
rudimentary (see the use of the group velocity by Spalart & Yang 1987). The 
streamwise evolution of the laminar flow as accounted for to a reasonable 
approximation, but the non-parallel effects (non-zero v-component) were not. 

The new ingredient referred to as the fringe method, first applied to the Hiemenz 
flow (Spalart 1986), which allows the treatment of some truly spatially evolving, 
non-parallel flows with the same algorithm. 

Let x be the direction in whioh the flow is not uniform, but for which the numerical 
method requires periodicity. The periodic domain [O,A] is divided into a ‘useful 
region ’ [L, A - L] and two ‘fringe regions ’ [0,  L] and [ A  -L,  A ]  at either end of the 
interval (by periodicity, these two regions can be regarded as one). The useful region 
is intended to cover the whole spatial history of a wave whereas earlier work with this 
code ontained only one or a few wavelengths. Let UB(z, y) be the laminar velocity 
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field; it satisfies the Navier-Stokes equations, in conjunction with a pressure field p,. 
Split the velocity field U(x, y, t )  into a prescribed part Uo(x, y)  and a disturbance part 

u= uo+u,. 
The first step is to define a field U, that is periodic and smooth in x (at least two 
continuous derivatives) but coincides with the laminar flow in the useful region : 

V , ( x , y )  = U,(x+x,, y) for L < x < A - L .  (31) 
Here xo is a parameter which allows us to locate the useful region in different parts 
of the laminar flow. For Blasius flow, the domain must start some distance 
downstream of the leading edge. A simple way to construct U, is to define a function 
2 ( x )  which equals x on [L, A - L ]  but is periodic with period A ,  and to  write 
U, = (u,,~,) with uo(x,y) = u,(2+xo,y), ~ , ( x , y )  = (di/dx)v,(i+x,,y). Naturally in 
the fringe U, is not a Navier-Stokes solution because d2/dx f 1.  It is not even 
essential to make i t  divergence-free. The function 2 is derived from a Gaussian 
(Spalart 1988). 

The equations governing U, are the following: 

v.u, = o  (32a) 

%+ U,.VU,+ U,.VU,+ U,-VU, = -Vp,+vV2Ul-d(x) U,+F(x ,y , t ) .  ( 3 2 b )  

I n  the useful region, U, is a Navier-Stokes solution (i.e. U,.VU, = -Vp,+vVzUo), 
and d and F are both zero. A simple manipulation of ( 3 2 )  then shows that 
U = U, + U, satisfies the Navier-Stokes equations within that region, which was the 
objective. 

The key assumption is that the non-physical phenomena occurring in the fringe do 
not invalidate the solution in the useful region. In  general, the incompressible 
Navier-Stokes equations include long-range pressure interactions ; however, in a 
shallow domain this range is only of the order of the smaller dimension, here the 
boundary-layer thickness S. This is why the assumption S 4 A is essential here, as it 
probably is for any numerical inflow-outflow strategy, or a wind tunnel for that  
matter (defining A loosely as the streamwise extent of the flow). 

The role of the -d(x)  U, term in ( 3 2 b )  is to damp the disturbances while they are 
in the fringe : d is a positive scalar function that rises smoothly from 0 in the useful 
region to a finite value in the fringe, typically a Gaussian. Assuming that the laminar 
flow is in the positive x-direction, the disturbances (i.e. U,)  are convected by U, into 
the fringe and their amplitude is reduced by orders of magnitude by the -dU,  
term. As a result the fluid that enters the useful region from the fringe, a t  
x = L ,  is essentially free of disturbances, which amounts to the ‘inflow condition’ 
U = U, = U,. We assume that the useful region and the fringe communicate only by 
convection of disturbances, and that information cannot travel upstream more than 
a few S. In  other words, on the scale of L and A ,  the equations have a parabolic 
behaviour. 

The last term in (326)  is a prescribed body force F(x, y, t ) ,  periodic in time and 
confined to a short region in x ,  that is used to generate waves in the flow (the 
analogue of a vibrating ribbon). With the present set up, adding a body force within 
the domain is more convenient than explicitly adding the perturbation to the inflow 
condition. I n  either case, there is no shape for the perturbation that is more justified 
than others. However, some shapes do generate waves in a smoother manner, 
resulting in a shorter transient in x before the wave is ‘well developed’ in the 

at 
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sense of exhibiting a smooth growth rate (there is no rigorous concept of a ‘pure’ 
TS wave since the solution is fully two-dimensional). A fair choice is of the form 
E:, = a@/ay ,  F, = - a~ / i lx ,  with 

@=Ecxp ( ( X ; g , ) Z  c r ~  YZ)  y 2  cos (ot - ax). 
(33)  

Here, E is the amplitude of the force; ux and , are lengthscales in x and y ;  x, is the 
position of the ‘ribbon‘; w is the frequency of the wave; 01 is a wavenumber. The 
primary parameters are w and z,+xo, and e becomes important for nonlinear waves. 
The other parameters are chosen empirically to  obtain a smooth transient; a is an 
estimate of the wavenumber of the wave, crx is of the order of the wavelength, and 
uy of the order of 6. 

Thc function in (33)  was constructed from a Guassian factor to  make it fall rapidly 
but smoothly to zero, a y2 factor to impose the boundary conditions a t  the wall, and 
a time-periodic wave-like dependence on t and x. The couple (F’, F,) is divergence- 
free. The boundary and divergence conditions are not indispensable in a body force, 
but if the divergence-free projection of F does not satisfy the no-slip condition, thin 
shear layers will appear at the wall and may degrade the numerical accuracy. 

In  the algorithm that solves (326)  for U, the terms not found in the Navier-Stokes 
equations (two cross-terms with U, and the d and F terms) are treated like the 
nonlinear term U,.VU,,  by an explicit Runge-Kutta scheme (Spalart et al. 1991). 
This limits the magnitude of d for numerical stability ; a typical peak value for d ( x )  
is 0.5/At where At is the time step. In  a typical situation, U, is reduced by three 
orders of magnitude while passing through the fringe (for our purpose there is no 
need to reset U, exactly to  zero). This can be achieved with L z A / 9 ;  thus, less than 
25% of the domain is wasted. 

I n  practice the functions d ,  i-x, and F a r e  not exactly zero in the useful region, 
since Gaussians are used. However, the parameters such as crx are chosen small 
enough relative to A that  the residual values are negligible. Note also that since U,  
is given by the Blasius equations, it is not exactly a Navier-Stokes solution. A 
higher-order approximation would require further assumptions about the outer flow 
and not be unique, and its stability properties would presumably differ very little 
from those of the basic Blasius solution. 

The system given by (32)  was programmed and tested, and the parameters such 
as L / A  or vY/6 chosen, mostly empirically. One basic requirement is that  the 
homogeneous system ( F =  0) be stable, which is not granted because of the 
streamwise amplification of the wave, and depends primarily on the d term and the 
width of the fringe. When this is true, we can start at t = 0 with U, = 0 and activate 
F.  After a sufficient time (a few times Alum) a time-periodic solution is obtained for 
U,. With infinitesimal amplitudes 6 the nonlinear term U,.VU, is inactive and the 
system behaves linearly ; in particular, the periodic solution is accurately harmonic 
with frequency w .  Resolution tests, tests in which x,, was varied, and moderate 
alterations of the ribbon parameters in (33) were all satisfactory. Another test is to  
use for U, a parallel flow with Blasius profile. In that case exponential growth in x 
is obtained, with a growth rate close to that given by the Orr-Sommerfeld equation. 
Furthermore the growth rate is maintained up to the edge of the fringe at A - L ,  
demonstrating that there is very little upstream influence of the extra terms in the 
fringe. This test also allows us to estimate the extent of the transient needed to the 
right of x, to obtain a well-developed wave. Even with well-chosen parameters in 
(33) ,  this extent is about 5 x lo4 u/U,  in x; as a result, i t  is impossible to firmly define 
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the leftmost part of the neutral curve, which is around x = 9 x lo4 v /Um.  I n  addition, 
it is much more difficult to obtain smooth and reproducible growth rates for decaying 
waves than for growing waves (this was to  be expected, considering the existence 
of continuous-spectrum modes with arbitrarily small decay rates in the Orr- 
Sommerfeld equation). 

Amplitude ratios for the wave amplitude from branch I to branch I1 of the order 
of e5 have been obtained with F = 50. Much larger ratios, such as elo, will eventually 
cause problems because even small numerical errors in the large-amplitude region 
will degrade the accuracy in the low-amplitude region. This would be true with 
almost all numerical methods, whether the errors propagate due to the global 
character of a spectral method, or to an implicit time integration scheme, or to the 
Poisson solver for the pressure. This numerical difficulty is absent in all the 
‘temporal ’ calculations, or in the parabolic theory presented in this paper. 

We may compare the fringe method with that of Fasel (1976), which adresses the 
same problems. Unlike in Fasel’s method, which is more conventional, we cannot 
declare simple inflow and outflow conditions such as Dirichlet, Neumann, or 
combination of derivatives. We verify that at the inflow the disturbance U, is of 
much smaller amplitude the the disturbance that is intentionally input by the 
‘ribbon’ (33). Thus, the solution is close to satisfying the Dirchlet condition that 
U = U, a t  x = L. At the outflow, the method achieves the objective of letting the 
disturbance smoothly leave the domain better than most conventional conditions, 
such as combinations of derivatives. Fasel’s outflow condition relies on single-wave 
linear theory to such an extent that  it cannot tolerate finite disturbances, nor even 
wave packets (Konzelmann & Fasel 1991 ; Rist & Fasel 1991). We conclude that the 
outflow condition implied by the fringe method is a little more obscure than the 
traditional ones, but is applicable to a much wider range of disturbances. 

In  terms of numerical efficiency, the cost per grid point and time step is 
comparable between the two methods, both running on Cray computers (U. 
Konzelmann & U. Rist, personal communication, 1991). Now the spectral method is 
recognized as being much more accurate per grid point. Stability calculations usually 
require 25 to 40 points in the y-direction (Spalart et al. 1991), compared with 105 
points for Konzelmann & Fasel (1991), as an example. The waste of about 25% of 
the grid points in the x-direction is vastly offset by the extra accuracy, not to 
mention convenient numerical features such as decoupling of modes in the linear 
terms. Finally, note that the application of an efficient spectral method in y is quite 
dependent on the use of Fourier series in x (Spalart et al. 1991), which in turn is made 
possible by the fringe method. 

Three cases were chosen to compare the theory and the numerical results. One case 
is linear and at relatively low frequency (F  = 50) to show the effect of non-parallelism 
only, see figure 3. The other cases show both non-parallel and nonlinear effects. The 
results for the nonlinear evolution a t  F = 86 are shown in figures 11 and 12. 

4. Results 
The results are presented in two main parts, both focusing on the Blasius boundary 

layer. First, the role of non-parallelism on stability is isolated using small TS wave 
amplitudes in the direct simulation, and by solving the linearized version of the PSE, 
(6). Second, the evolution of finite-amplitude, two-dimensional disturbances is 
investigated. 

As described above, the choice of the reference length So for non-dimensionalization 
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FIGURE 3. Amplification curves based on ukax and the integral kinetic energy, (35), ws. Reynolds 
number R, at (a) F = 220 and (b )  F = 50. Circles show results of the direct Navier-Stokes 
simulation. 

is the value of 6(9,) at the initial location of the marching calculations. Since this 
location varies from run to run, we remove this variation from the output data by 
non-dimensionalizing all results a posteriori with the local lengthscale 6(9). 

4.1. Non-parallel effects 
Figure 3(a)  and 3(b)  show the amplitude variation of ukax for TS waves at 
frequencies F = 220 and F = 50 calculated by the parallel theory (dashed), the non- 
parallel results for u;,,, (14a), and the integral of the kinetic energy, (35). The circles 
denote results for ukax obtained by the direct Navier-Stokes simulation using a 
maximal TS amplitude of lo-' to ensure linearity. The effects of non-parallelism are 
most visible at the higher frequencies, where the growth rates are small. At the lower 
frequency, all three curves are similar. In other words, non-parallel effects are 
insignificant at the lower frequencies where the TS waves undergo sufficient 
amplification to initialize secondary instabilities. The good agreement between the 
PSE and the DNS solutions reinforces our belief in the correctness of both methods. 

We use the linearized parabolic stability equations (6) to duplicate the analysis of 
previous researchers, mentioned above. A similar, independent study can be found 
in Fasel &, Konzelmann (1990), who analysed direct Navier-Stokes solutions of 
small-amplitude TS waves at four selected frequencies to arrive at conclusions in 
agreement with those presented here. 
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FIGURE 4. Neutral stability curves for Blasius boundary layer based on different measures of 
growth. Symbols mark the results of previous studies: 0,  Bouthier, equation (34) ; 0,  Gaster, (35); 
a, Gaster (14a). The solid and dashed lines denote results given by the PSE (36). 

We begin the comparison with a listing of the definitions of growth that have been 
employed. Bouthier (1973) chose to measure growth in terms of the disturbance 
kinetic energy, el = u’~+v’~ ,  and defined instability on a pointwise basis yielding ti 

growth rate which varied with x and 7.  He computed growth rates from changes of 
el along lines of constant 7, consistent with his use of parabolic coordinates, 

Bouthier presented two neutral curves. We consider the first curve that shows the 
points in the (RF)-plane for which instability was detected in a t  least one point 
across the boundary layer (usually a t  the wall) ; the second represents those points 
for which instability was detected in all points across the boundary layer. 

Gaster’s (1974) analysis seems the most penetrating and complete. His growth rate 
results are based on (14a), and on the integral of the disturbance kinetic energy 

1 d E  
E dx 

[ ~ “ + ~ ‘ ~ ] d y ,  yC(x) = --. (35) 

Saric & Nayfeh (1977) argued that both Bouthier’s and Gaster’s definition of the 
energy is incomplete by disregarding the product between the disturbance and the 
basic flow. We computed the neutral stability curve based on their definition of the 
energy (no results based on this quanity were given by Saric & Nayfeh): 
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FIQURE 5. Iso-amplification lines based on the energy u" + v", (34), at F = 200. Growth measured 
along lines of constant 7. (a) PSE, ( b )  Orr-Sommerfeld equation. Circles denote position of ukax at 
branches I and 11. 

where T is one period of the TS wave and time integration is used to obtain an r.m.s. 
value. Obtaining an r.m.s. value in time is simpler than in space, as chosen by Saric 
& Nayfeh. 

We have applied all the definitions (34), (35) and (36), to the solutions of the 
linearized PSE. The resulting neutral stability curves are compared with published 
data in figure 4. The accurate duplication of published results points to both the 
correct formulation of their theories (i.e. ordering of terms) and to the accuracy of 
their solutions. The disagreement between published neutral curves must, then, be 
attributed to an incorrect comparison of different quantities, and we address this 
issue here. 

Most of the effects Bouthier attributed to non-parallelism are really due to the 
direction of differentiation. To illustrate this point we have applied definition (34) to 
data furnished from the OrrSommerfeld equation. The results are shown in figure 
5 in the form of lines in the (R, 7)-plane on which the growth rate is constant, i.e. iso- 
amplification contours. The shaded regions are stable, while the regions in white are 
unstable. Both the contours from non-parallel calculations, figure 5 (a) ,  and the ones 
from the OSE, figure 5 ( b ) ,  show similar structure. In particular, both plots show 
maximum instability near or at the wall. For the parallel results one can show that 
at the wall, i.e. in the limit of y+O, definition (34) yields the growth rate 
aOSE - 1/(2R), showing clearly how (34) yields misleading values. The circles in figure 
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FIQURE 6. Comparison of experimental data and direct simulation data (based on uLax) with the 
neutral stability curves for Blasius flow based on ukaX (solid line), u' at y = 0.4 (dashed line) given 
by PSE, and the Orr-Sommerfeld equation (dashed line). Experimental data: A, Ross et al. (1970) ; 
0,  Schubauer & Skramstad (1947) ; 0 ,  Strazisar et al. (1976).; X , Kachanov et al. (1977) ; 0,  Fasel 
& Konzelmann (1990). 

5 (a, b) mark the position of In  figure 5 (b ) ,  the circles also mark the branches 
I and I1 as given by the parallel theory, since a t  this point the direction of 
differentiation does not affect the growth rate. 

Gaster's neutral curves based on uLax and on (35) closely match the present results. 
The measurement of growth based on uLax is of particular interest because most of 
the experimental data are based on the growth of u' a t  or near its maximum. Gaster 
compared his neutral curve based on ukax with experimental data and concluded 
that the discrepancy a t  the high frequencies could not be explained. Our results are 
in agreement with his observation, as will be shown by figure 6. 

The neutral stability curve based on (36) is shown in figure 4 as a dashed line. The 
difference in growth rates yG and ys is negligible, indicating that the effect of the 
term 2U,u in (36) is small. 

Saric & Nayfeh (1977) presented a neutral curve based on the eigenvalue of the 
Orr-Sommerfeld equation plus its non-parallel correction as given by the method of 
multiple scales. Bridges & Morris (1987) have shown that the corresponding physical 
quantity is the normal component of velocity w measured a t  approximately y = 2, 
where the contribution by the profile (l/w)(av/az) is zero. The usefulness for such a 
definition is limited, since the w-component of velocity is too small for direct 
measurements. Saric & Nayfeh also displayed growth rates based on u', differentiated 
along lines of constant q similar to those of Bouthier. These results are in agreement 
with ours, as shown in figure 7 (a). 

Figure 6 shows the neutral stability curves based on the growth of ukax as defined 
by (14a), the growth of u' a t  q = 0.4 (along lines of constant q ) ,  and the neutral curve 
based on the Orr-Sommerfeld equation. Plotted as symbols are the experimental 
data of Ross et al. (1970), Schubauer & Skramstad (1947), Strazisar, Prahl & 
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Reshokko (1976) (the only data that show error bars), Kachanov et al. (1977), and 
Wortmann (1955), as reported in figure 1 of Saric & Nayfeh (1977). Also shown are 
the DNS results of Fasel & Konzelmann (1990), based on u;,,~. The computed curves 
differ from experimental data at lower Reynolds numbers and higher frequencies, 
and indicate that the discrepancy cannot be attributed to mean-flow non-parallelism. 
Indeed, comparison of the neutral curve based on ukax with the curve given by the 
parallel calculations shows the effect of non-parallelism to be small for the two- 
dimensional disturbances considered here. The critical Reynolds number remains 
largely unchanged, and the overall effect of non-parallelism on the neutral stability 
curve is a slight extension to higher frequencies, and a small downstream shift of 
branches I and 11. More importantly, the maximum growth rate in the non-parallel 
flow is close to the value given by the parallel theory, as shown in figure 3. 

The source of the discrepancy between experimental and theoretical results for the 
neutral curve may be found in the details of the experimental measurements. Saric 
(1990) discusses numerous difficulties encountered in conducting accurate stability 
experiments. The difficulties intensify at  frequencies above F = 200 due to the weak 
TS amplification. We contribute to this discussion by investigating the sensitivity of 
growth rates to four different effects : 

(i) the distance from the wall at which the measurement is made; 
(ii) the presence of a slight adverse pressure gradient ; 
(iii) the extent of transient response following altered initial conditions (as after 

the vibrating ribbon) ; 
(iv) nonlinear effects a t  the amplitude levels used in the experiments. 
Ross et al. (1970) measured the growth of the u’-component along lines of constant 

r ]  at  points below the maximum of u‘, thus altering the growth rate in the same way 
as Bouthier. Similarly, Schubacher & Skramstad measured growth along lines 
parallel to the plate a t  a location below the maximum of u’. Figure 7(a) shows the 
iso-amplification lines in the (R, r])-plane a t  a frequency F = 200 based on the u’- 
component of velocity and differentiation along lines of constant 7. Figure 7 (b) shows 
the lines obtained by differentiating along lines of constant y. The square in figure 
7 (a) denotes the location of the measurements of Ross et al. There, branch I is about 
AR = 20 upstream of the value based on that is marked with a circle. This 
observation helps explain the systematic error A8 = -20 in the Reynolds numbers 
mentioned in their paper. The slope near the wall of the zero-amplification line 
indicates how measurements made near the wall lead to lower Reynolds number for 
branch I, and a higher one for branch 11. The most unstable frequency is also 
increased, as seen in figure 6, where we display the neutral curve that results from 
measuring the growth of u’ a t  the wall distance of r] = g/d(?) = 0.4, along lines of 
constant r ] .  

At ym the growth rate is independent of the direction. Conversely, we investigated 
the growth rate along a family of lines of the form y = with 0 < c < $, to see 
whether for any particular direction and streamwise position the growth rate is 
constant across the boundary layer. No such direction was found. 

The sensitivity of the neutral curve for uAax to an adverse pressure gradient is 
shown by the increase of the maximum unstable frequency from F = 254 in the 
Blasius boundary layer to F = 346 in a Falkner-Skan boundary layer with a pressure 
coefficient of P = -0.02, corresponding to the flow over a flat plate inclined by 1.8’ 
to the free-stream direction. The change in the pressure coefficient is about 2% 
between branches I and I1 at the frequency F = 50. While an angle of 1.8’ can be 
measured without difficulty, the effective inclination of the plate to the incoming 
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FIQURE 7. Iso-amplification lines based on the growth of u' for F = 200. Growth measured along 
(a) constant 7, (b) constant y. Triangles indicate the results of Garic & Nayfeh (1977). Circles denote 
the position of the square the position of the measurements of Ross et al. (1970). The flow is 
stable in the shaded areas. 

stream is more difficult to  detemine since the flow is affected by the growth of 
boundary layers along the wind-tunnel walls and can be obstructed by measuring 
devices in the test section. 

Before advancing to the effects of transients and finite amplitudes, it should be 
noted that while the effect of non-parallelism of the evolution of two-dimensional 
waves is shown to be weak, the effect increases for three-dimensional waves as the 
direction of wave propagation veers away from that of the mean flow. At F = 86 the 
difference in total amplitude growth between the parallel and non-parallel 
calculations increase from 2.1 YO for a two-dimensional wave to  27 YO for waves 
inclined a t  40" to the mean flow. At a propagation angle of 54" the non-parallel 
calculations show branch I and branch I1 separated by about 200 units in the 
Reynolds number, while the parallel-flow calculations do not display any region of 
instability. This results lead us to  question if the experimental neutral points a t  high 
frequency were for three-dimensional rather than two-dimension waves. We found 
the destabilizing effect of non-parallelism on three-dimensional waves at the higher 
frequencies to  be insufficiently strong to alter the result of Squire's theorem for 
parallel flows : the highest unstable frequency is reached by a two-dimensional wave. 
A full discussion on this subject can be found in Bertolotti (1991). 
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FIQURE 8. Transient solutions. (a) Distorted initial u' profile, (a) transient growth rate based on 
ukBx at F = 50, (c) transient growth rate at F = 270. Dots represent transient-free solutions. The 
solid and dashed lines in ( b )  and (c) indicate results for small and large step size, respectively. 

4.2. Transient analysis 
The generation of TS waves by a vibrating ribbon was investigated by Gaster 

(1965) and Aships & Reshotko (1990) who solved an initial-boundary-value problem 
associated with the Orr-Sommerfeld equation. The details of the events at, and near, 
the ribbon are beyond the scope of the present analysis which involves only one 
frequency. Instead, we address the speed of recovery of a disturbed TS wave profile 
to its undisturbed shape. This analysis is made possible by the ability of the PSE to 
account for the effects of upstream history on the solution. 

The correct initial profile, $,,, as given by the local procedure, was perturbed with 
a profile satisfying the boundary conditions but otherwise arbitrarily chosen in the 
form 

where the amplitude A is such that the maximum of the u'-component of the 
perturbation is 1.5 times the maximum of the undisturbed TS wave. The value of 5 
is chosen to prevent any singularity at  the initial location of marching (Hall 1983), 

g = t+d+&iwR. 

As shown in figure 8(a ) ,  in comparison with the TS wave, the u'-component is 
perturbed mainly in the region below the point of phase reversal, the region most 

$,, = Ay2 e-Y-CU' 
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FIGURE 9. Alteration of neutral curve due to nonlinearity ( A  = 1.4%) (circles) and transient 
behaviour (triangles). Solid and dashed lines indicate the neutral curves based on for PSE and 
OSE, respectively. 

likely influenced by the vibrating ribbon that in experiments is typically located 
below the critical layer (y z 1). The initial value of the growth rate and wavenumber, 
a,, was perturbed by increasing the theoretical value by 50 %. The complete initial 
disturbance stream function was 

$, = (#O+#D)exp(~a,x-iot). 

The recovery to the unperturbed TS profile occurs within one wavelength A,. To be 
consistent with the parabolic approximation, very small step sizes were taken in the 
initial stages of marching. Two step sizes were used, 0.003 125A, and 0.00625h0. After 
marching over ;A,, the step size was increased to 0.025A0 and 0.05h0, respectively. 

a t  F = 50. The initial 
location xo is a t  R = 550, one wavelength upstream of branch I. The agreement 
between the solid and dashed lines corresponding to different step sizes shows that 
numerical effects are small. The transient growth rate shows branch I shifted 
upstream by a modest AR z - 5.  The velocity profile a t  xo + +Ao closely resembles the 
undisturbed TS profile. This fast recovery indicates that, at least for our choice of 
perturbation, the evolution of the TS wave depends weakly on different initial 
conditions, unlike in the case of Gortler vortices, as discussed by Hall. 

At higher frequencies, where amplification is weak, the growth rate oscillates 
about the unperturbed value for a longer downstream distance. Figure 8 (c) shows the 
transient growth rates at F = 270. The 'oscillations are strong enough to display 
branches I and I1 at  a frequency well above the neutral curve. The transient growth 
downstream of the ribbon could contribute to the distortion of the experimentally 
determined neutral curve at  higher frequencies. The neutral stability curve given by 
our choice of perturbation function is shown in figure 9. 

Figure 8 ( b )  shows the transient growth rate, based on 
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FIGURE 10. Amplitude of V.S. Reynolds number R for TS waves at F = 86 and the first 
harmonic with 2F using initial TS amplitudes of 0.25% (heavy lines) and 0.30% (thin lines) at 
R = 400. The dashed line shows the linear result. Symbols denote results of the direct NavierStokes 
simulation. 

4.3. Nonlinear analysis 
One may also suspect nonlinear effects to contribute to the discrepancy between 
results and measured data. The experimental measurements of Ross et al. (1970) at 
higher frequencies have been performed at TS amplitudes ukax of about 1.4%. A 
previous study (Herbert 1974) employing the parallel-flow approximation and 
temporal growth has shown that nonlinearity is destabilizing at the higher 
frequencies. Nonlinear non-parallel calculations based on a Landau expansion in the 
amplitude (Bertolotti 1991) confirm these results, but the shift with respect to the 
linear results is too small to account for the difference with experimental data. The 
circles in figure 9 show neutral stability points for a TS wave of 1.4 % amplitude. We 
conclude that the discrepancy between experiment and theory for the neutral curve 
of the Blasius boundary layer can be attributed to neither non-parallel nor nonlinear 
effects. 

The nonlinear evolution of a two-dimensional TS wave of frequency F = 86 was 
studied starting from R = 400 and marching downstream. Six Fourier components 
were used, with frequencies OF, F, . . . ,5F. Two initial amplitudes where selected : 
A,  = 0.25% and 0.30% (based on ukax of the mode with frequency F ) .  The results 
show that the effects of nonlinearity increase strongly with the amplitude. When 
A ,  = 0.25 %, the disturbance reaches a maximum amplitude of 2.44 YO at R = 877 
and then decays. However, for A ,  = 0.30% the disturbance continues to grow past 
R = 950. 

The variation of the uAax amplitude with the Reynolds number is shown in figure 
10. The upper heavy line is the amplitude of the TS wave for the 0.25% initial 
amplitude level, the lower heavy line is the amplitude of the 2F harmonic. The upper 
and lower thin lines show the corresponding quantities for an initial TS amplitude of 
0.30 YO. The dashed curve shows the linear result for an initial amplitude of 0.25 YO. 
The circles and squares denote the values given by the full NavierStokes 
simulation and are in very good agreement with the PSE results. The velocity profiles 
at R = 800 for the case with 0.25 % initial amplitude are shown in figure 11. For the 



470 F.  P .  Bertolotti, Th. Herbert and P .  R .  Spalart 

8 

7 

6 

5 

4 

3 

2 

1 

0 0.01 0.02 

8 8 

7 7 

6 6 

5 5 

7 4  4 

3 3 

2 2 

1 1 

0 0.001 0.002 0 2 lo-' 

FIQIJRE 11. Velocity profile of (a)  u (mean-flow distortion) and (a) u', at R = 796, F = 86, for MI 

initial amplitude of 0.25% at R = 400. Symbols denote results of the direct Navier-Stokes 
simulation, lines the PSE results. 

TS wave and the 2F and 3F harmonics the abscissa is the r.m.s. amplitude. The 
squares denote the values given by the full Navier-Stokes simulation. The good 
agreement between the nonlinear solutions to the PSE and direct Navier-Stokes 
solutions justifies the neglect of small terms in the PSE approach. 

The destabilization of the TS wave by nonlinear effects in the neighbourhood of 
branch I1 and the continued growth as the amplitude exceeds some threshold value 
is consistent with the predictions of Itoh (1974) and Herbert (1974). Similar growth 
beyond branch I1 has been observed in Navier-Stokes solutions by Bayliss et al. 
(1985) and in the asymptotic analysis of Goldstein & Durbin (1986). The run with an 
initial amplitude of 0.3 Yo is currently being continued with high resolution to clarify 
the fate of the flow in a strictly two-dimensional framework. In  general, the two- 
dimensional flow is destroyed by strong secondary instabilities as the amplitude 
reaches levels of 1 YO. 

The nonlinear effect on the growth rate is readily seen in figure 12 which shows the 
growth rate versus the amplitude ukBx a t  various Reynolds numbers (F = 86). The 
lines present the result of Landau expansions of orders As,  A', and AQ, while the 
circles are given by the marching code, from various runs with different initial TS 
amplitudes. A small difference in growth rates given by the Landau and marching 
procedures persists as A -+ 0 due inherent differences between local and marching 
results. Nonlinearity has a destabilizing effect for R > 700. The convergence of the 
Landau series is restricted to amplitudes of about 1 YO while the marching solution 
can be obtained for larger amplitudes, provided a sufficient number of harmonics is 
retained. The main shortcoming in the Landau procedure is the need for an ordinary 
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FIGURE 12. Variation of the growth rate 7 with the amplitude uknx at F = 86 and various Reynolds 
numbers. Lines denote results of the Landau expansion ( - - - - ,A6;  ---- ,A7  ; -, As) ,  circles results 
of the PSE obtained with different initial amplitudes. 

differential equation that yields an acceptable approximation to the mean-flow 
distortion (see 82.5). We obtained an approximate equation by assuming that the 
profile is locally self-similar. 

The marching code was primarily used on a Cray XMP/24. Although no special 
effort was made to optimize or vectorize the code and each Fourier component was 
approximated by 40 Chebyshev polynomials, the run times remained short : each of 
the two runs to generate the data shown in figure 10 required 162 s of CPU time, 
while the results of the linear analysis in figure 6 were obtained in less than 4 s. 

5. Concluding remarks 
Two new techniques for the analysis of boundary-layer stability are presented. 

One involves the direct solution of the NavierStokes equations, the other uses 
parabolic partial differential equations (PSE) for the stability analysis of con- 
vectively unstable flows. The latter approach offers numerous benefits over 
traditional methods based on normal modes and perturbation methods. The most 
noteworthy benefits are the ability to incorporate simultaneously mean-flow non- 
parallelism and nonlinearity and to correctly describe disturbances with long 
streamwise wavelengths. A local procedure is developed for the generation of initial 
conditions. 

To clarify the diverse results of previous studies, we have used the PSE to 
investigate the effect of non-parallelism in the Blasius boundary layer. Our results 
show that this effect is small, in general agreement with the results of Gaster (1974) 
and Van Stijn & Van de Vooren (1983). The numerical results of Bouthier (1973) and 
Saric & Nayfeh (1977) can be reproduced, but the analysis shows that their 
definitions of growth rates are not based on relevant physical quantities, hence 
should not be compared with the existing experimental measurements. 
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The effect of finite amplitudes on growth rates has been considered. These 
nonlinear studies show that the maximum unstable frequency for finite-amplitude 
waves is higher than predicted by linear theory, but insufficient for explaining the 
experimentally observed amplification. The effect of initial transients on the 
evolution of TS waves is also considered. By arbitrarily distorting the initial 
conditions, we observe a region of transient growth which can alter the curve of 
neutral stability, suggesting a possible reason for the discrepancy at high frequencies 
between stability theory and experiments that use a vibrating ribbon to excite 
disturbances in the boundary layer. 

An alternative approach for studying the spatial evolution of disturbances in 
boundary layers including nonlinear and non-parallel effects is the direct numerical 
solution to the Navier-Stokes equations. Special care must be taken to avoid using 
outflow boundary conditions which reflect a part of the energy of an outgoing 
disturbance. Herein we present a method for solving the full Navier-Stokes equation 
which uses buffer zones adjacent to the inflow and outflow boundaries and maintains 
the benefits of using Fourier series in the streamwise and spanwise direction. 

The direct Navier-Stokes approach does not take advantage of the essentially 
parabolic character of the evolution of the disturbances, except in the fringe regions. 
This approach has an advantage and a disadvantage when compared to solving the 
PSE. The advantage is that the solution remains accurate all the way into turbulent 
flow, provided there is sufficient resolution, while the validity of the PSE may 
become questionable at the tertiary stages of transition after the appearance of 
spikes. The disadvantage is the enormous increase of memory and computational 
time needed. For this reason the PSE has practical applications. Results from the 
two approaches are compared as a first step in validation, and the agreement is found 
to be excellent. 

Analysis based on the PSE has been extended to nonlinear, three-dimensional 
disturbances (Herbert 1991 ; Bertolotti 1991), and to compressible flow (Bertolotti & 
Herbert, 1991). The formulation in these works is a straightforward extensions of the 
one presented herein. Recently, the non-localized receptivity model of Crouch (1990) 
has been incorporated into the PSE (Crouch & Bertolotti 1992). We have limited our 
presentation herein to an incompressible flow in two dimensions, for clarity and 
emphasis of the basic concepts. 
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Contract F49620-87-K-0005 (F.P.B. and T.H.) and by a NASA Training Grant 
NGT-50259 (FPB). One of the authors (P. R.S.) thanks Drs R. Moser and T. Poinsot 
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